IRTBEMM - Family of Bayesian EMM Algorithm for Item Response Models
Applying the family of the Bayesian
Expectation-Maximization-Maximization (BEMM) algorithm to
estimate: (1) Three parameter logistic (3PL) model proposed by
Birnbaum (1968, ISBN:9780201043105); (2) four parameter
logistic (4PL) model proposed by Barton & Lord (1981)
<doi:10.1002/j.2333-8504.1981.tb01255.x>; (3) one parameter
logistic guessing (1PLG) and (4) one parameter logistic
ability-based guessing (1PLAG) models proposed by San MartÃn et
al (2006) <doi:10.1177/0146621605282773>. The BEMM family
includes (1) the BEMM algorithm for 3PL model proposed by Guo &
Zheng (2019) <doi:10.3389/fpsyg.2019.01175>; (2) the BEMM
algorithm for 1PLG model and (3) the BEMM algorithm for 1PLAG
model proposed by Guo, Wu, Zheng, & Chen (2021)
<doi:10.1177/0146621621990761>; (4) the BEMM algorithm for 4PL
model proposed by Zheng, Guo, & Kern (2021)
<doi:10.1177/21582440211052556>; and (5) their maximum
likelihood estimation versions proposed by Zheng, Meng, Guo, &
Liu (2018) <doi:10.3389/fpsyg.2017.02302>. Thus, both Bayesian
modal estimates and maximum likelihood estimates are available.